The evolution of locomotor rhythmicity in tetrapods.
نویسندگان
چکیده
Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components.
منابع مشابه
Development and Evolution of the Muscles of the Pelvic Fin
Locomotor strategies in terrestrial tetrapods have evolved from the utilisation of sinusoidal contractions of axial musculature, evident in ancestral fish species, to the reliance on powerful and complex limb muscles to provide propulsive force. Within tetrapods, a hindlimb-dominant locomotor strategy predominates, and its evolution is considered critical for the evident success of the tetrapod...
متن کاملPhylogenetic patterns of skeletal morphometrics and pelvic traits in relation to locomotor mode in frogs.
Frogs are one of the most speciose groups of vertebrate tetrapods (> 6200sp) with a diverse array of locomotor behaviours. Despite the impressive diversity in frog locomotor behaviours, there remains a paucity of information on the relationship between skeletal variation and locomotor mode in frogs and the evolutionary patterns in which these relationships are framed across the frog phylogeny. ...
متن کاملCorrelated trends in the evolution of the plesiosaur locomotor system
—This paper investigates trends in the evolution of body size and shape in the Plesiosauria, a diverse clade of Mesozoic marine reptiles. Using measures from well-preserved plesiosaur specimens, we document and interpret evolutionary patterns in relative head size, body size, and locomotor variables. Size increase is a significant trend in the clade as a whole, and in constituent clades. The tr...
متن کاملLocalization of a suprachiasmatic nucleus subregion regulating locomotor rhythmicity.
The bilaterally symmetrical suprachiasmatic nuclei (SCN) of the hypothalamus are the loci of the mammalian clock controlling circadian rhythms. Previous studies suggested that all regions of the SCN are equipotential as circadian rhythmicity is sustained after partial ablation, as long as approximately 25% of the nuclei are spared. In contrast to these results, we found that animals bearing par...
متن کاملDisruption of Cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of Drosophila.
The Drosophila melanogaster circadian clock is generated by interlocked feedback loops, and null mutations in core genes such as period and timeless generate behavioral arrhythmicity in constant darkness. In light-dark cycles, the elevation in locomotor activity that usually anticipates the light on or off signals is severely compromised in these mutants. Light transduction pathways mediated by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Evolution; international journal of organic evolution
دوره 67 4 شماره
صفحات -
تاریخ انتشار 2013